Improved Firefly Algorithm for Unconstrained Optimization Problems
نویسندگان
چکیده
منابع مشابه
Firefly Algorithm for Unconstrained Optimization
Meta-heuristic algorithms prove to be competent in outperforming deterministic algorithms for real-world optimization problems. Firefly algorithm is one such recently developed algorithm inspired by the flashing behavior of fireflies. In this work, a detailed formulation and explanation of the Firefly algorithm implementation is given. Later Firefly algorithm is verified using six unimodal engi...
متن کاملAn Improved Firefly Algorithm for Optimization Problems
Optimization problem is one of the most difficult and challenging problems that has received considerable attention over the last decade. Researchers have been constantly investigating better ways to solve it. Recently, one optimization technique called firefly algorithm has gained the interest of many researchers. This algorithm is a type of swarm intelligence algorithm based on the reaction o...
متن کاملAn Efficient Conjugate Gradient Algorithm for Unconstrained Optimization Problems
In this paper, an efficient conjugate gradient method for unconstrained optimization is introduced. Parameters of the method are obtained by solving an optimization problem, and using a variant of the modified secant condition. The new conjugate gradient parameter benefits from function information as well as gradient information in each iteration. The proposed method has global convergence und...
متن کاملHybridizing ant colony optimization with firefly algorithm for unconstrained optimization problems
we propose a novel hybrid algorithm named ACO-FA, which integrates the merits of ant colony optimization (ACO) with firefly algorithm (FA) to solve unconstrained optimization problems. The main feature of the hybrid algorithm is to hybridize the solution construction mechanism of the ACO with the FA. In our hybrid algorithm, the initial solutions are generated randomly from the search space, an...
متن کاملFirefly Mating Algorithm for Continuous Optimization Problems
This paper proposes a swarm intelligence algorithm, called firefly mating algorithm (FMA), for solving continuous optimization problems. FMA uses genetic algorithm as the core of the algorithm. The main feature of the algorithm is a novel mating pair selection method which is inspired by the following 2 mating behaviors of fireflies in nature: (i) the mutual attraction between males and females...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications Technology and Research
سال: 2014
ISSN: 2319-8656
DOI: 10.7753/ijcatr0401.1014